
6

The use of graph-based verification methods for block
designs has been shown to provide a significant time
and cost reduction when compared to more traditional
constrained random techniques. By filling the random
constraint space in a controlled random fashion, the full
set of constraints can be filled significantly faster than a
random constraint solver will. Possibly more importantly,
the ability to describe a graph in canonical form is likely to
be easier to modify and maintain over the life of an IP block
than constraint statements. Combining graphs with a UVM
environment, it is possible to extend block-level verification
components into a SoC-level test environment with little
additional verification development.

GRAPHS
There are a variety of choices for stimulus generation in a
verification environment. The possibilities include directed
tests, constrained random testing, graphs, or a combination
of approaches. Graphs have several advantages that can
be important in a reconfigurable verification environment.

A graph defines a single tree of stimulus, where each
branch represents one or more legal stimulus sets. The
graph itself is a self-contained entity, that may provide an
API for higher-level graphs to call, and provides a legal
stimulus set for the underlying environment. Because a
graph is a self-contained entity, it is possible to define
graphs for standard protocols, or specific functions.
Once a graph is defined, it can be passed between
projects or layered.

Figure 1: Layered Graphs

A stand-alone IP block tends to have specific functionality
that is accessed through one or more standard bus
protocols. This can fit nicely with layered stimulus, where
a lower-level graph follows the bus protocol, and a higher-
level graph provides stimulus for the IP itself. By isolating
the protocol knowledge from the IP, the graphs are simpler
to develop and maintain, and easier to reuse or acquire
from third parties. Because a graph can be expressed as
a diagram, it can be significantly easier to understand the
stimulus, particularly for team-members who are not familiar
with verification.

A graph representation allows the input stimulus space to
be expressed as a single tree, with each branch providing
one or more legal stimulus sets. Because of this, the full
input state space can be enumerated. With a count of all
possible legal inputs, input coverage can be detected and
reported automatically; in the same way that line coverage
is generally provided automatically.

UVM
The ability to migrate from an IP-level to SoC-level
verification requires an environment designed for reuse.
This is the purpose of the UVM. It provides a standard
library to develop modular, encapsulated components
with a configurable interconnect to tie them together.

The use of UVM agents allows the details of each protocol
to be separated from the stimulus source, checkers,
and coverage monitors. Agents may be constructed for
proprietary busses, or acquired for standard protocols. This
allows the verification environment to be constructed quickly
from building-block components that are connected through
TLM based on the needs of a particular environment.

STAND-ALONE VERIFICATION ENVIRONMENT
The UVM and graph-based environment shown in figure 2
provides a stand-alone IP verification environment. Through
modularity and standard interfaces, a flexible testbench
structure can be built with easy access for visibility, debug,
and process monitoring.

Graph-Based IP Verification in an ARM SoC Environment
by Andreas Meyer, Verification Technologist, Mentor Graphics Corporation

7

Figure 2: Reconfigurable UVM Environment

However, this environment relies on the processor bus
agent (the AXI master agent in figure 2) to directly drive
the ARM bus. As a result, this testbench cannot be used
unmodified for an SoC integration-level test, since that
would result in conflicts on the processor bus.

SOC VERIFICATION
Functional verification requirements at the SoC level are
changing. Where there was little interaction or resource
contention between IP blocks, an interconnect test was
generally sufficient for SoC functional verification. As more
complex IP blocks are being integrated into SoCs, system
level verification
is required to measure
interactions, resource
sharing, utilization, or
power concerns. The
ability to reuse existing,
tested block-level IP
verification components
can significantly reduce the
SoC verification effort.

Part of the goal of a
UVM-based approach
is to ensure that IP-level
verification components
have the potential to be

instantiated unmodified into an SoC environment.
Components such as scoreboards and checkers
are good candidates. The IP-level graph stimulus
block may also be able to be used unmodified,
but the sequence items that were created by
the graph can no longer be driven directly onto
the processor bus, assuming that the bus only
supports one master, and a processor has been
instantiated in the SoC environment.

While this changes the connection between the
stimulus graph and the IP block, the stimulus
itself may not need to change. To connect the

graph, the sequence items need to be accessed by the
processor, and then driven on the processor bus. Two new
components are needed: a software routine running on
the processor that reads sequence items and performs
the specified operations, and a graph item buffer. Since
sequence items tend to contain basic bus operations:
read or write to a specific address with specific data, the
software routine performs the operation, and then fetches
the next sequence item. The item buffer is a verification
component that is addressable by the processor that stores
sequence items from the graph and delivers them to the
processor when accessed, as shown in figure 3.

Figure 3: Graph Stimulus Driven Through Processor

Graph-Based IP Verification in an ARM SoC Environment
by Andreas Meyer, Verification Technologist, Mentor Graphics Corporation

8

Figure 4: System Exerciser

The simplest software routine is a loop that waits for an item
to be available from the buffer, pulls the item from the graph
item buffer, executes it, and then waits for a new item to be
available. For more complex operations, this routine may
access multiple items. If coordination is required between
existing software and stimulus, then the processor may also
write commands that provide status or control to a top-level
stimulus graph.

The graph item buffer can be a UVM sequencer that
accepts items from any number of stimulus graphs, and
has a driver to handshake with the software routine. For
bi-directional operation, two buffers can be implemented to
allow software to control the verification environment.

With this method, all items generated by the stimulus graph
will be driven onto the processor bus, with the support
of the processor. This approach requires that there is
an available address space for the graph item buffer to
be accessed by the processor. Because the software
will execute several operations to fetch items, the timing
between items is likely to change. Back-to-back operations
may be difficult to reproduce, and some low-level control
that was available through a master agent may be lost.

This approach will
allow the IP to be
driven from within
the SoC integration.
The main verification
IP: stimulus, check,
and coverage may
be completely
unmodified,
while block-level
environment is
reconfigured. A top
layer graph may
be used to provide
some control and
communication
between the existing

software and the lower-level API stimulus graph.

SYSTEM EXERCISER
When multiple IP blocks have been independently tested
and then integrated into the SoC, this method can be used
as a system exerciser. For IP blocks that do not share
resources, multiple stimulus graphs can be connected
directly to the graph item buffer, and each IP-level test
can run in parallel as shown in figure 4. Block-level
scoreboards and functional coverage are used to measure
IP functionality. Additional system-level scoreboards can be
added to check overall system operation if desired.

Note that this environment will most likely need to include
a top-level graph to coordinate and configure each of
the lower-level graphs. This may include waiting until the
software is running, coordinating operation for shared
resources, and determining overall completion of lower-level
graphs.

Using just the IP-level stimulus graphs, this simple system
exerciser allows the IP blocks to run in parallel, possibly
in parallel with system software. Resource sharing, bus
utilization and contention, and simple system performance
can be observed.

9

Where the IP tests are run unmodified, only tests that do
not cause interference with other blocks can be run. This
will likely result in a subset of the IP tests being used. If
system-level tests are needed that stress IP interactions,
this environment provides all the building blocks to add
a new SoC-level graph that drives multiple IP blocks in a
coordinated fashion. The graph item buffer can be used
to allow coordination between the system-level graph and
software if needed.

CONCLUSION
This approach provides a method for functional verification
of an IP in a reusable environment. This allows for a low-
cost method for a verification engineer to re-verify an IP
after it has been integrated into an SoC. Existing, tested,
verification components are used to check that the IP is
operating correctly within the target SoC environment.

In an SoC environment that contains multiple independent
IP blocks, this approach can be extended to run multiple
IP verification suites in parallel, providing a simple system-
level exerciser. By adding a top-level stimulus graph
for coordination, a more complex SoC level verification
environment can be constructed from the block-level
components.

Editor: Tom Fitzpatrick
Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters
8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777
Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

